Biphasic cytochrome c release after transient global ischemia and its inhibition by hypothermia.
نویسندگان
چکیده
Hypothermia is effective in preventing ischemic damage. A caspase-dependent apoptotic pathway is involved in ischemic damage, but how hypothermia inhibits this pathway after global cerebral ischemia has not been well explored. It was determined whether hypothermia protects the brain by altering cytochrome c release and caspase activity. Cerebral ischemia was produced by two-vessel occlusion plus hypotension for 10 mins. Body temperature in hypothermic animals was reduced to 33 degrees C before ischemia onset and maintained for 3 h after reperfusion. Western blots of subcellular fractions revealed biphasic cytosolic cytochrome c release, with an initial peak at about 5 h after ischemia, which decreased at 12 to 24 h, and a second, larger peak at 48 h. Caspase-3 and -9 activity increased at 12 and 24 h. A caspase inhibitor, Z-DEVD-FMK, administered 5 and 24 h after ischemia onset, protected hippocampal CA1 neurons from injury and blocked the second cytochrome c peak, suggesting that caspases mediate this second phase. Hypothermia (33 degrees C), which prevented CA1 injury, did not inhibit cytochrome c release at 5 h, but reduced cytochrome c release at 48 h. Caspase-3 and -9 activity was markedly attenuated by hypothermia at 12 and 24 h. Thus, biphasic cytochrome c release occurs after transient global ischemia and mild hypothermia protects against ischemic damage by blocking the second phase of cytochrome c release, possibly by blocking caspase activity.
منابع مشابه
Mild postischemic hypothermia prolongs the time window for gene therapy by inhibiting cytochrome C release.
BACKGROUND AND PURPOSE We showed previously that Bcl-2 overexpression with the use of herpes simplex viral (HSV) vectors improved striatal neuron survival when delivered 1.5 hours after stroke but not when delivered 5 hours after stroke onset. Here we determine whether hypothermia prolongs the therapeutic window for gene therapy. METHODS Rats were subjected to focal ischemia for 1 hour. Hypot...
متن کاملMitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia.
Release of cytochrome c from mitochondria to the cytosol is a critical step in apoptotic cell death after focal cerebral ischemia. The relationship among cytochrome c release, selective vulnerability, and delayed death of hippocampal CA1 neurons after transient global ischemia was examined. Global ischemia was induced by 10 min of bilateral common carotid artery occlusion and hypotension in rat...
متن کاملEbselen reduces cytochrome c release from mitochondria and subsequent DNA fragmentation after transient focal cerebral ischemia in mice.
BACKGROUND AND PURPOSE The seleno-organic compound ebselen has both antioxidant and anti-inflammatory properties. Although ebselen has been shown to protect the brain against stroke, it is unclear how ebselen provides neuroprotection. In the present study the authors examined whether ebselen inhibits neuronal apoptosis resulting from transient focal cerebral ischemia in mice. The cytochrome c r...
متن کاملMinocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation
Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...
متن کاملMinocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation
Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 25 9 شماره
صفحات -
تاریخ انتشار 2005